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NONTECHNI CAL SUMMARY

This report considers a generalization of the repairman models

treated in [3]. Here the system studied consists of n operating

units, mn spare units, and two repair facilities. The operating units

are subject to failures of two types: minor and major. Minor failures

are sent to a local repair faciity and major failures tc a central

repair facility. Once a unit is repaired it is returned to the spare

pool if n units are operating, otherwise 4t goes directly into

operation.

As in [3], , we shall assume that all failure and service

times have an exponential distribution. The stochastic processes

representing the number of units waiting or undergoing repair at each

of the two repair facilities is a finite state, continuous-parameter

Markov chain, which attains a stationary or steady-state distribution

after a long time has elapsed Actual numerical computation of this

steady-state distributon is difficult Howevee, the method developed

in this paper provides a readily calcu'ated approximation when n is

large, along with results which allow for -el'able prediction of system 'I
performance. Our principal concern in this paper is to understand

how system performance is effected by the many system parameters.

At the current state of knowledge we feel that this is the correct

approach and that attempts to optimize system performance should come

latter

For sake of numerical illustration we give several examples

Suppose there are 100 operating units and 30 spare units of a single

type and that their failure time has exponential distribution with mean

10 days With probability 8 the failure is minor and can be fixed

:- (ii)



at the local repdir facility, number 1. With probability .2 it is major

and must be repaired at the central facility, number 2 Repair facility

1 has 10 servers with mean repair ti.m.e I day. Repair facility 2 has

k 15 servers with mean repair time 5 days. Let Xi  denote the number

of units waiting for or unoergoing repair at facility i (i = 1, 2) in

the steady-state. Then the app-oximations cbtained in this report

yield the fact that X, and are independent, X1 (X2 ) is

approximately normal with mean 8 (10) and standard deviation

2.8 (3 1) The probability that 100 units are operating is .998. These

results are unchanged if the number of spares is reduced to 11. In this

example neither of the repair facilities is saturated and essentially a

maximal number of units are operating.

In contrast to this first example, suppose the number of servers

at facility 1 is reduced from 10 to 5 and that the other parameters

-emain the same. Then the random 2-%ector (X,, X2) is approximately

a bivariate normal with mean vector (61,6.2l and covariance matrix

69 -6.2 The number of operating units is approximately normal
6.2 62

wi.th mean 62 and standard deviati:n 8 7. If in this example, the

number of spares is reduced from 30 to 15 units, then the distribution

of the number of operating units is uneffe:ted, however (Xl, X2)

is bivariate normal with mean vector (45, 6.2) and the same covariance

matrix. Thus in this case adding more spares only increases the ii
congestion at facility one without increasing the number of operating

u.n Its

Let n denote the number of operating units, mn the number of

spare tinits, A the failure rate, p(l-p) the probability of a minor

(major,) failure, sn(s2) the number of servers at facility 1(2),

n ni



and (2 the service rate of a single server at facility 1(2).

The following general conclusions are aong those that can be drawn

from the resuits of this paper:

(i) if < min(s, m)

and mn(Sn, m
2-n 

d'

then both facilities will be unsaturated and essentially a full set of

n units will be operating;

(ii) if, on the other hand, either

-1)l > Sn
ii n

or
n~q

then at least one facility will be saturated and fewer than n units

will be operating.

If.

~(iv)



6.6 , ..i0

APPROXIIATIONS FOR THE REPAIRMAN PROBLEM

wITH TWO REPAIR FACILITIES, II: SPARES*

byI

Donald L. Iglehart and Austin J Lemoine

1. INTRODUCTIO;,Z

The first paper in this series [3] considered a generalization

of the classical repairman problem in which there were two repair

facilities but no provision for spare units. In this paper we study

the same model but now include spare units. Again we have n operating

units which are subjec. to failures according to ar exponential

failure diztributi .i with parameter X > 0. Backing up these n

operating units -are mn spare units which can be used to replace any

of the operating units that fail At most n units can be operating

at a given time. Iwo types Cf failures are possible. With probability

p(q! a failure of type one (two) occurs and the fai1td unit requires

se-vice from repair facility 1(2) which operates like an s; (sn) -

server queue with eponential service t.ne distribution having parameter

j. 2 When repairs are completed on a unit, it returns to the spare

pool and is once again available to be used as an c.erating unit The

fVow of units in the system it shown in Figure 1.

This researsh was sponsored by Office of Naval Research contract
U00014- 72-C-0266 (NR-347-022)
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Fagure ]
As in (3] we let X (t) denote the n'uber of units waiting and

undergoing repair at facil:ty 1 , 2 !he process Xn(t)

i'Xft), X(t)) is a posit~ve recurrent X-rkcv chain (Mc.) with a

finite state space and hence possesses a statvonary distribution

Our goal again 's to study th;s statiar.ary listribution as n -

Th:s we do under the asswuption that sn- n 1 , 2) anA

--ina as n-> , where 0 (Si I and m . 0 Our results

proviae si;ple approximations for the stationary distribution in

terms of the seven independent paraieters in the model besides n:

ps;- I'p s2, '23 m When spares are included in the model, there I
are a great many cases to consider most of which yield different

results As a compiete elaborati;n of all cases would prove to be

21



very tedious, we havc elected to present only a representatie sample of

cases since the methodology seems more important than the specific

resu ts

The organization of the paper is as follows. As in [3] we treat

the classical repairman problem with one repair facility in Section 2

The fu 1l two facil ty model is de=_t with ip Section 3

2. ONE REPAIR FACILITY

First we consider the =del -n Figure 1 with only one repair

faci'ity; i.e , p = 1, a = 0. Let Xn(t), a birth-death process,

denote the numdber of units waiting or undergoing repair at time t

Let ar.d sn = sn with Sn-, ns, where 0 < s - 1. The

state-space of the process is N  (0 = •. n + ran*, the birth

(n)po-aaeters are A- = (n - [i-n 3);, and the death parareters
6 ne (Asn) Let Xn  denote a -andan variable (,v)

I .- ng the stationary distribut'on of the process ;x (t) t > 01
1 n n

aria , n - Xrn- ' the stat:onary ntaber of units operating

If i .pXn = -, thern we kr.w f-em the genefa) theory that

fn) (ni. (n)
n

(2 1) _on)

122=n ( ) (n),MU (n) I,(n)),i
t2 2) =n (,(fn) ii tu

A - A- (-



As in [3], we let (() denote a Poisson r.v. witl; parameter

A, and 5(n,p) denote a binomial r.v. with parameters n and p.

Let a = X/li. Then the first results is

(2.3) PROPOSITION. If a < sAm, then

pin) = [I-o(n-1 /2)] P{I?(na)= i}, 0 < i < sn A mn

and
!P (n) < [1 - o(n-1/2)] ?{G(na) = snAmni sn Amn

A~n
= o(n1/2a , S mn < i < n

where a = a[(sm) - :J< I (with e > 0 chosen suitably small)and

the terms o(n- / ) are uniform in i N n'N*

Proof. We shall oniy treat the case s < m, the other being similar.

Then from (2,1j and (2.2) we can write

~(n) na
n = ena P{(na) = i}, 0 <i < S

(n) =e na Pif(na) = sn} ( n, }n < i n ,

and

) na ()na mn-Sn i-mn- l (n-k
,(n) =enaam
IT e. P{ff(na) = sn n -) - a), m n < i _<n + mn . *

n k=O

Using the same method employed in Proposition 2.21 of [3], we can

show that I
e-na (n) = 1 + o(n-1/2), as n -> .

From this (2.3) follows immediately.

41



From (2.3) we obtain the following corollary using the classical

limit laws fe (3,.'a).

(2.4) COROLLARY. If a < s A m, then

lim P{Xn <sn Amn } = ,n-o

n X
n  => a,

(Xn - na)/(na) 2  > N(0,),

lim P{Yn = n} 1,
n-Kon

1/2(na) P{X k - (2r) exp{-znk/2} -> ,

uniformly for integers k E R+, where Znk = (k-na)/(na)1 /2

(2.5) REMARK. This result shows that when a < s A m and n

is large the number of busy servers fluctuates about na and with very

high probability n units are operating and no queue forms at the

repair facility. One would normally expect s < m; however, just so

long as m > a the exact number of spares is not important. The

condition a/s < 1 is a light traffic condition which seems to be a

desirable state of affairs from an operational point-of-view.

Next we consider cwo cases o'. heavy traffic (a > s) before

returning to the remaining case of light traffic (m < a < s), which

requires a different technique.

}' 5



(2.6) PROPOSITION. If a > s/[l- (s-m)+], then

p~n) = [I - o(n1I2)] P{(P(snb) = n + m - i, nVS i <n + m,

and

()=o(n-I/2 'nn V'Sn -I
0i) < i < m nVS n

where b( 1  and < 1 (with e> 0 chosen
suitably small)arld the terms o(n are uniform in i e Nn.

Proof. We only treat the case s < m, the other case being similar

again. For this case it is more convenient to start with (n) = 1;
n+mn

see the proof of Proposition (2.21) in [3] for further discussion.

Using this normalization we can show that

Snb (n) = I + o(n" 2), as n -> o.
7e Nn as

n

Once this is established the proof follows the general method used n 3].

As we have seen above the following corollary is obtained
immediately.

(2.7) COROLLARY. If a > s/[l-(s-m)+], then

lim P.X > nS andn- nV nl

n- Xn => l + m- sb.

In addition, if In-s sl o(n " a/2 nd In1- 1/2

In n -si= on an i mm o(if ) then

6



[X - n(l + m - sb)]/(nsb) 1/2  > N(0,1),n .

(Y - nsb)/(nsb)l 2  
_N(O$1), and

(nsb)1/2 P{Yn = k - (2Tr)-1/2 exp{-z k/2} > O,

uniformly for integers k c.R+, where z = (k-nsb)/(nsb)1/2

(2.8) REMARK. Notice that in this case roughly nsb units will be

operating regardless of the level of spdres.. Furthermore, all servers

will be occupied and queues of the order of n [1 +m - s(b+l)] will'

form. The moral ofithe story here is that if the queue is in a heavy

traffic condition (a.> s/[l - (s-m)+]) spares are of no help in

eliminating con.estion and down operating units.

Finally, we turn to the last cise of light traffic, m < a < s.
A.I I" -p

Let

(2.9) PROPOSITION. If m'< a < s and [e(a+ma)/(m+ma)]m (l+a) "  = y< 

then
'I

i(n) [l - o(n1/2)] P{ (n+mn a/(l+a)) = i}, mn < i <n.

(n) <l2l+mm-ea/n n)< I- o~n )]L(T+-a) ,,+"-a P{P(na) =ill, 0 <i < mn ,

and E
(n) n I +m s+e a),in], S.

- ~o~n ( 5 < i < n n

where e > 0 is chosen suitably small and the term o(n'1 12) are

uniform in I .Nn

7
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I-MI 77I7
Proof, Here we take the irr. s to be normalized so that =r 1.

Then we find that

Tr(n) e ena P{@(na) =i} 0 0< 1 <m

7 =n bn P6(n+mn afl+a)'*1) =i} l ~

and

Trr) b P{$(n+mn a(l+a)-) = s < ( < n +

where
nn (1+a) n

4 n

nn
In

S Sn

First we shall show thatI

(2.10) b- 7fN (n 1 + o(n 1 1 2'), as n -

Using Chebyshev's inequality it is easy to show that

SnA
Sn (n)1

7r(n > I OW(r )
n~m

Also using the fact that (l+m-s)a <s by hypothesis, we can show that

n+mn

(2,12) br 7T()-on /

For n sufficiently large it follows from results on exponential

convergence that

8



P{[?(na) < md < [ea (a/mnf

see for example HEATHCOTE (1967), p. 224. Hence

1 Mnl(n) < na 1 Cm-a(a/m)mnn
i =0 1[bn i 0 Tr < e

It is easy to show for large n that

ea b1  <

Thus

(21) b 1  ( ~n) n 1/

i =0

Combining (2.11), (2.12), and (2.13) yields (2.10). The rest of the

proof then follows .immediately.

'Again the next corollary follows imediately

(2.14)' COROLLARY. If m < a < s and y< 1, then

lim P{M n< X n <sn}

n- Xn ~ a(l+m)/(1+a), and

In addition, if In- m~ - mil =o(n- 1 ) then

and,

-~ 21/2[Y n(l+m)/(1+a)]I[n(l+m%/a(l+a) J => N(O,1).

n



(2.15) REMARK. The condition y < 1 requires that m(<a) not be

"too close" to a. For this case there will be with high probability

idle capacity at the repair facility but less than n units operational.

In this case, however, it would pay to add more spares. Fortunately,

in practice it seems unlikely that there would be more repairman

that spares, expect for those instances where the individual units

are very expensive.

This completes our discussion of the one repair facility model and

we now move to the two facility model.

3. TWO REPAIR FACILITIES

In this section we shall treat the two facility model illustrated

in Figure 1. As was indicated in the introduction, we shall only

consider a sample of the cases which seem to be of greatest practical

interest. Even for these cases we only sketch the proof. Recall that

iA
X (t) = (Xn(t), Xn(t)), where X (t) represents the number of units

waiting and undergoing repair at facility i, is a positive recurrent

M.c. with finite state space An = {(ij) : i, j >0, i + j < n -i mn}.
As was the case in the first paper [3], {n(t) : t > 01 is a reversible

competition process (r.c.p.); see [2, p. 331] for details. This fact
again allows us to define constants (n) i

the lim P{Xn(t) = (i,j)1 = P{x (i,j) n) wher
the~nwhr

(3.1) (n) = (n)/ (n) fI/ n(ij)

~ n)
and

(An)  for A CAn.
(ij)s-A I

10 4
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Again we let Y =n - X'+X -m )+ denote the stationary number

of units operating and N(O, ~)stand for a normal random vector with
0V

mean vector a~ and covariance matrix ~.Throughout the rest of this
paper we assume sn oy ns1  (=1,2 and mnv nm as n->~

where 0 < s. < 1 and m > 0. Let a, = Xp/.'1, a2 = Xq/U~2, and

a=(a,, a2). Ch i s cswe trea is perhaps te ms aoal

on rmtepoint-of-view ofan oeainlsystem. Bohfclte

are operating in light traffic and an ample number of spares are

available.

(3.2) PROPOSITION. If s + S , a< s1  and a < S then

(n) /2l-=i}*=]i

where 0< i< s and0<j s

gProof. Set 7rn 00 1 and use the method of [2] to obtain

(3.3) A = enaa2 Ptf(na,) = ii Pfd'(na2)

for 0 < i < s' and 0 < j :S S2. Using the appropriate expressions
(n) -n(a1,+a2)7(n) +o(n') /

for the other 7rqj's we can show that e n =1

as n - .Combining this result with (2.18) yields (2.17).

Again the proof of the following corollary follows immediately.

(3.4) COROLLARY. If s+ S2<na < Sl, and a2 <2'te

(3.5) lim PX S ~1 2)}. -1
Nn- (n" n

n-

(.)n X a-
^-:1

1.... ----



(3.7) (Xn na)/n' > N(O, ),

ga 0":

0 a2

-- ' and : :

.. (3.8) lir Y n

(3.9) REMARK. Under the conditions of (3.4) no queues form and r,

units are operating with high probabili2ty. Note also that X1 and X2
--__,n -In

are asymptotically independent. The two facility model in this case

behaves exactly like two independent one facility models.

Before proceeding to the next result, we mention the fact that

the conclusions of (3.2) and (3.5) are essentially unchanged if one of

the following three situations hold:

(3.10) s 1 + s2 > m, a1 < s< m, a2 < s 2 <m and either

m > s + a or m > s + al;

(3.11) a1 < sl < m, a2 < m < S2; or

(3.12) a1 < m < s, a2 < m < s2 .

In all of ii.-Cse cases (3.6), (3.7), and (3.8) h-ld, hov'ever, (3.5)

requires slight modification. Observe that in all of these cases

iii we need a. < si A m, i = 1, 2. It is this condition whiich insures

a light traffic situation at both facilities and n units operating

with high probability.

12



Now let v = (1+a2)/aI and y = a2/(l+" 2). The next case we

consider is one in which facility 1(2) is in heavy (light) traffic and

an ample number of spares are available.

(3.13) PROPOSITION. If s1 +S2 m, a, > S, (l+a2), and a2 < S2, ten

(~n) n-/
ij = [l - o(nI/2)] Pff(Snv) = n+ mn - i} P{(B(n + mn  iy) =j,

where mn <i, O<j<Sn, and i + j <n + mn.

Proof. Set 1. Then again using the method of [3] we obtain

in)=e PIT(Snv) = n + mn - i P{O (n + m- i) =.j},.1 n

for m.:i, O<j :_s2, and i + j<n + mn. The rest follows using

the standard approach.

In this case we have

(3.14) COROLLARY. If s1 + s2 <m, a1 > sl (+a2), and a2 < s2, then

(3.15) lim P[X n > mn , X2 < sn} 1;
n-o n- n -X n's" 1

(3.16) n -- (1 + m - slv, YSl);

(3.17) nl Y n --> Slv(l-y) < (l+a2)

In addition, if In- sn - S = o(n- I/2) and In- 'n - ml o(n-1/2), then

(3.18) nX nrl)/n1 " => (tnrl =I

4,
13



where

1 v -s 1V

r ; and

(3.19) [Y - s y 1/ 2 => N(O,1).

n nsiv(l-y)J/[ns,,V(1+y)]1

(3.20) REMARK. In this case with high probability repair facility 1

is completely occupied and no queue forms .at repair facility 2. Less

than n units are operating with high probability regardless of how

many spares are provided just so long as s, + s2 <m. Again we see

that spares are of no help in alleviating a heavy traffic condition,

at one of the repa.- facilities. Adding more spares only increases

the congestion at facility 1 without producing more operating units.

The results of (3.13) and (3.14) are essentially unchanged if

one of the following three conditions holds:

(3.21) s 1I + s 2 > m, s 1 I Sm, s 2 <_m

(i+a2)sI < aI, a2 < m; or

(3.32) s1I > m, s2 > m

C(l+a2)m] V sl < al, a2 < M.

14



In all of these cases (3.16), (3.17), and (3.18) and (3.14) hold,[ however, (3.15) requires slight modification. For these cases

facility 1 (2)1 is in heavy (light) traffic. Increasing the level ofI

spares only adds to the congestion at facility I without producing more

operating units.I
The final case we treat is comparable to (2.9). There is idle

capacity at both flacilities, however, less than n units are operating.I

-As in [3J we let denote a triniomial r.v., pi=ai/(IalTa2 ):-

i = 1, 2, and P (P11 P~2)

(3.24) PROPOSITION. If (i-a2)m .al < l' a2 <M < 2, -

* and

Ee(a 1 + mal )/(m + ma ))m(l+al~a2)l =J < 1

thenI
(n)

P1  [ o(n ') Pfj(n~mn; P11 P2) =(i"j)19

where m~<n ~~n

Proof. Set 7r) 00 1 and then for mnci< Sn' O<J mn ihv

- d~ P(J(n+m,; 'l'~=(i )Al

where

"" 1(l+a 2 -*~

From here the method is the same.

15 '



(3.25) COROLLARY. If (l+a 2 )m< a1 < s1 , a2 < m < "2' and

then1 2~X 2, and~ n
Y1 < 1,-thenn

rn P{mn <Xn< sn 0 < X2 <mn  =n -,,,, n ~ - n - - n - n,
n-1

n > 0! + m)p, and "

n- Yn => (1 + m)f(l + a* + a2)

In addition, if mn - m ( then

(X n(i-+ mpin . N(O, A),

where

1(1 Pl) _'n]2

AI1IP2 P2(1 P2)

and

- n(l + m)/(l'+ a1 + a2l]/[P1(l - pl) + P2(1 - P2 1I 2  > N(O,1).

(3.26) REMARK. In tiis situation, both facilities are in light traffic

but fewer than n units are operating. This again is the situation in

which it would pay to buy more spares.

This concludes our discussion of the two facility model. We

repeat the principal lessons learned. In order to insure unsaturated

conditions at both facilities and a fell set of n units operating

we need to have al< sAm and a2 < s2Am. If on the other hand

either a1 > s I or a2 > s2 , then at least one facility will be



saturated and fewer than n units will be operating. In this latter

case addition of spare units only increases confestion without

contributing to operating units.

171
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